Wire Like A Pro: Peeking Into Wire Harness Mastery

There are many ways to learn, but few to none of them compare to that of spending time standing over the shoulder of a master of the craft. This awesome page sent in by [JohnU] is a fantastic corner of the internet that lets us all peek over that shoulder to see someone who’s not only spent decades learning the art of of creating cable harnesses, but has taken the time to distill some of that vast experience for the rest of us to benefit from.

Wire bundle

This page is focused on custom automotive and motorcycle modifications, but it’s absolutely jam-packed with things applicable in so many areas. It points out how often automotive wiring is somewhat taken for granted, but it shouldn’t be; there are hundreds of lines, all of which need to work for your car to run in hot and cold, wet and dry. The reliability of wiring is crucial not just for your car, but much larger things such as the 530 km (330 mi) of wiring inside an Airbus A380 which, while a large plane, is still well under 100 m in length.

This page doesn’t just talk about cable harnessing in the abstract; in fact, the overwhelming majority of it revolves around the practical and applicable. There is a deep dive into wiring selection, tubing and sealing selection, epoxy to stop corrosion, and more. It touches on many of the most common connectors used in vehicles, as well as connectors not commonly used in the automotive industry but that possess many of the same qualities. There are some real hidden gems in the midst of the 20,000+ word compendium, such as thermocouple wiring and some budget environmental sealing options.

There is far more to making a thing beyond selecting the right parts; how it’s assembled and the tools used are just as important. This page touches on tooling, technique, and planning for a wire harness build-up. While there are some highly specialized tools identified, there are also things such as re-purposed knitting needles. Once a harness is fully assembled it’s not complete, as there is also a need for testing that must take place which is also touched on here.

Thanks to [JohnU] for sending in this incredible learning resource. If this has captured your attention like it has ours, be sure to check out some of the other wire harness tips we’ve featured!

The Surprisingly Manual Process Of Building Automotive Wire Harnesses

Even from the very earliest days of the automobile age, cars and trucks have been hybrids of mechanical and electrical design. For every piston sliding up and down in a cylinder, there’s a spark plug that needs to be fired at just the right time to make the engine work, and stepping on the brake pedal had better cause the brake lights to come on at the same time hydraulic pressure pinches the wheel rotors between the brake pads.

Without electrical connections, a useful motor vehicle is a practical impossibility. Even long before electricity started becoming the fuel of choice for vehicles, the wires that connect the computers, sensors, actuators, and indicators needed to run a vehicle’s systems were getting more and more complicated by the year. After the engine and the frame, a car’s wiring and electronics are its third most expensive component, and it’s estimated that by 2030, fully half of the average vehicle’s cost will be locked in its electrical system, up from 30% in 2010.

Making sure all those signals get where they’re going, and doing so in a safe and reliable way is the job of a vehicle’s wire harnesses, the bundles of wires that seemingly occupy every possible area of a modern car. The design and manufacturing of wire harnesses is a complex process that relies on specialized software, a degree of automation, and a surprising amount of people-power.

Continue reading “The Surprisingly Manual Process Of Building Automotive Wire Harnesses”

2025 Component Abuse Challenge: Boosting Voltage With Just A Wire

Switching power supplies are familiar to Hackaday readers, whether they have a fairly conventional transformer, are a buck, a boost, or a flyback design. There’s nearly always an inductor involved, whose rapid change in magnetic flux is harnessed to do voltage magic. [Craig D] has made a switching voltage booster that doesn’t use an inductor, instead it’s using a length of conductor, and no, it’s not using the inductance of that conductor as a store of magnetic flux.

Instead it’s making clever use of reflected short pulses in a transmission line for its operation. Electronics students learn all about this in an experiment in which they fire pulses down a length of coax cable and observe their reflections on an oscilloscope, and his circuit is very similar but with careful selection of pulse timing. The idea is that instead of reflected pulses canceling out, they arrive back at the start of the conductor just in time to meet a pulse transition. This causes them to add rather than subtract, and the resulting higher voltage pulse sets off down the conductor again to repeat the process. We can understand the description, but this is evidently one to sit down at the bench and experiment with to fully get to grips with.

Continue reading “2025 Component Abuse Challenge: Boosting Voltage With Just A Wire”

splice-cad assembly

Splice CAD: Cable Harness Design Tool

Cable harness design is a critical yet often overlooked aspect of electronics design, just as essential as PCB design. While numerous software options exist for PCB design, cable harness design tools are far less common, making innovative solutions like Splice CAD particularly exciting. We’re excited to share this new tool submitted by Splice CAD.

Splice CAD is a browser-based tool for designing cable assemblies. It allows users to create custom connectors and cables while providing access to a growing library of predefined components. The intuitive node editor enables users to drag and connect connector pins to cable wires and other pinned connectors. Those familiar with wire harnesses know the complexity of capturing all necessary details, so having a tool that consolidates these properties is incredibly powerful.

Among the wire harness tools we’ve featured, Splice CAD stands out as the most feature-rich to date. Users can define custom connectors with minimal details, such as the number of pins, or include comprehensive information like photos and datasheets. Additionally, by entering a manufacturer’s part number, the tool automatically retrieves relevant data from various distributor websites. The cable definition tool is equally robust, enabling users to specify even the most obscure cables.

Once connectors, cables, and connections are defined, users can export their designs in multiple formats, including SVG or PDF for layouts, and CSV for a detailed bill of materials. Designs can also be shared via a read-only link on the Splice CAD website, allowing others to view the harness and its associated details. For those unsure if the tool meets their needs, Splice CAD offers full functionality without requiring an account, though signing in (which is free) is necessary to save or export designs. The tool also includes a version control system, ideal for tracking design changes over time. Explore our other cable harness articles for more tips and tricks on building intricate wire assemblies.

Continue reading “Splice CAD: Cable Harness Design Tool”

Wiring Harness? That’s A Wrap!

[Mr Innovative] likes to keep his wire harnesses tidy, but it is a pain to neatly wrap cables. So, he automated the process using a combination of milled acrylic and 3D printing. We hope the design files will be up on his website soon, although the mechanism is similar to another wrapping machine he made a few years ago. However, it can still be a source of inspiration if you want to do a unique take on it.

To use the machine, you feed the wires through the center hole and mount tape on the spool. A motor spins the spool and you only need to slowly advance the tool to get a nice close wrap. Naturally, you can wrap tape around wires by hand, so this is a bit of a luxury item. However, we could see modifying it to move the cable through at a constant rate with another motor, which might do a better job than you can do by hand.

We couldn’t help but wonder if you could start with a ping pong paddle instead of cutting the frame out of acrylic.

Continue reading “Wiring Harness? That’s A Wrap!”

A person holds a bundle of white, black, and blue wires. The left hand side of the wires are wrapped with black tape. The wires are inside a wire wrapping machine with a grey plastic "C" which rotates inside seven small pulleys. A large pulley in the background drives three of the pulleys to rotate the "C" around and wrap the wires with tape from the spool attached to the "C."

DIY Tool Makes Wrapping Wiring Harnesses A Breeze

If you’re making a lot of wiring harnesses, wrapping them can become a bit of a drag. [Well Done Tips] wanted to make this process easier and built a wiring harness wrapping machine.

The “C” shape of this wrapping machine means that you can wrap wires that are still attached at one or both ends, as you don’t have to pull the wires all the way through the machine. The plastic “C” rotates inside a series of pulleys with three of them driven by a belt attached to an electric motor. A foot pedal actuates the motor and speed is controlled by a rotary dial on the motor controller board.

Since this is battery powered, you could wrap wires virtually anywhere without needing to be near a wall outlet. This little machine seems like it would be really great if you need to wrap a ton of wire and shouldn’t be too complicated to build. Those are some of our favorite hacks.

If you’re wanting more wire harness fun, try this simple online wiring harness tool or see how the automotive industry handles harnesses.

Continue reading “DIY Tool Makes Wrapping Wiring Harnesses A Breeze”

A Simple Web-Based Wiring Harness Tool

When building electronic assemblies there is quite often the need to construct custom cables to hook things up. It’s all very well if you’re prototyping by hand, or just building one or two of a thing, but if you’re cranking them out using outside help, then you’re going to want to ensure that cable is described very accurately. [Christian Nimako-Boateng Jr.] presents for us the first version of wirely, a wiring harness tool. This is a web-based tool that allows one to describe the cable ends and connectivity between them, producing a handy graphic and exports to excel in a format that should be easy to follow.

Based around the wireviz Python library running on a flask-based backend, image data are sent to the web assembly front-end and rendered with OpenGL. Configuration files can be imported and exported as JSON, making it easily linkable to other tools if required. Helpfully, the tool also seems to support some kind of revision control, although we didn’t try that yet. The process is straightforward enough, one simply defines a few groups (these relate to individual PCBs or other floating items in the assembly) which each contain one or more connectors. First, the connectors are described with part numbers, and wire gauge data, before defining the list of connections (wires) showing which signal and physical pins are connected together. Nothing more complex than that yet. We think there is still some more functionality that the tool could manage, such as shielding and guarding details, twisted pair definitions and a few others, but for a first pass, wirely looks pretty handy.

If you want a more heavyweight option using IEC 60617 symbols for describing wiring harnesses, then look no farther than QElectroTech, and yes, we have covered wireviz before, just for those that want to cut out the middleman and describe their cables in Python directly.