The Singing Dentures Of Manchester And Other Places

Any radio amateur will tell you about the spectre of TVI, of their transmissions being inadvertently demodulated by the smallest of non-linearity in the neighbouring antenna systems, and spewing forth from the speakers of all and sundry. It’s very much a thing that the most unlikely of circuits can function as radio receivers, but… teeth? [Ringway Manchester] investigates tales of musical dental work.

Going through a series of news reports over the decades, including one of Lucille Ball uncovering a hidden Japanese spy transmitter, it’s something all experts who have looked at the issue have concluded there is little evidence for. It was also investigated by Mythbusters. But it’s an alluring tale, so is it entirely fabricated? What we can say is that teeth are sensitive to sound, not in themselves, but because the jaw provides a good path bringing vibrations to the region of the ear. And it’s certainly possible that the active chemical environment surrounding a metal filling in a patient’s mouth could give rise to electrical non-linearities. But could a human body in an ordinary RF environment act as a good enough antenna to provide enough energy for something to happen? We have our doubts.

It’s a perennial story (even in fiction), though, and we’re guessing that proof will come over the coming decades. If the tales of dental music and DJs continue after AM (or Long Wave in Europe) transmissions have been turned off, then it’s likely they’re more in the mind than in the mouth. If not, then we might have missed a radio phenomenon. The video is below the break.

Continue reading “The Singing Dentures Of Manchester And Other Places”

3D printed tea cup and saucer with the edges made out of 3d printed human teeth. Cup is sitting on a wooden table.

Relax And Have A Nice Cup Of Teeth

Halloween is just around the corner and what better way to add a little spooky decor than to 3D print [DaveMakesStuff]’s Teeth Cup.

It looks like [DaveMakesStuff] has done the equivalent of “kit bashing” by taking 3D models of a full teeth set and merging them with a tea cup. Details are pretty light but a Twitter thread (Nitter)has some clues about the process. The cup looks like it can be done in one print, support free. The smooth finish comes from bead blasting it which, as an added bonus in this case, provides the “dirty” look as the bead blaster is only normally used on nylon SLS prints.

Halloween is always a good source of inspiration for hacker projects and we’ve had many good entries from Halloween Hackfests of the past.

Continue reading “Relax And Have A Nice Cup Of Teeth”

Treatment Triggers Teeth To Thrive

We humans like to think we’re pretty advanced, but we can’t regrow missing teeth in adulthood like sharks, alligators, and crocodiles. Once those pearly whites are gone, they’re gone for good, and we don’t even have a way to regenerate the protective enamel. However, this may not always be the case, because scientists at Kyoto University and University of Fukui in Japan have discovered a monoclonal antibody treatment that triggers tooth regeneration in laboratory mice.

Image by Katsu Takahashi/Kyoto University via Medical Express

Monoclonal antibodies are lab-fabbed molecules that act as substitute antibodies to enhance the body’s natural defenses against diseases like cancer and arthritis. These antibodies are also used to develop vaccines and treat COVID-19. In the case of cancer, monoclonal antibodies bind to antigens on cancer cells, effectively flagging them for removal, but they also do much more, such as deliver chemo and radioimmunotherapies.

By blocking the gene USAG-1, the scientists saw an increase in Bone Morphogenic Protein (BMP), which is a molecule that dictates the number of teeth a given creature will have in the first place. Because of this increase in BMP, the mice were able to regrow teeth. This proposition was a challenging one — BMP affects other aspects of development, and the early attempts did more harm than good by causing birth defects. The good news is that the treatment also worked in ferrets, whose teeth are much closer to human dentition than mice. Before moving on to human trials, the scientists will test it out on pigs and dogs. If you were given a second shot at a set of teeth, would you treat them better than the first, or even worse because you can just grow new ones again?

Speaking of pigs, it seems that pig-to-human organ transplants are on track for 2021.

We Bet You’ve Never Seen A Pink Denture Synth

At one end of the synthesizer world, there stands commercial instruments designed for the ultimate in sound quality and performance, tailored to the needs of professional musicians. On the other, there are weird, wacky prototypes and artistic builds that aim to challenge our conception of what a synth should be. The VOC-25 by [Love Hultén] falls firmly in the latter category.

The synth is built around the Axoloti Core, a microcontroller board set up for audio experimentation. Packing stereo DACs and ADCs, and MIDI input and output, it’s the perfect base for such a project. Loaded up with vocal samples, it’s played by a keyboard in a fairly typical sense. Where things get interesting is the panel containing 25 sets of plastic teeth. The teeth open and close when the user plays the corresponding note, thanks to a solenoid. Along with the clacking sound of the machinery and pearly whites themselves, it adds quite a creepy vibe to the piece.

With its clean pastel enclosure, we can imagine this piece as the star of an avant-garde filmclip, or merely something to terrify children at a Maker Faire. It’s a fun build, to be sure. We’ve seen some other great experimental synths over the years, too – this 48 Game Boy build comes to mind. Video after the break.

Continue reading “We Bet You’ve Never Seen A Pink Denture Synth”

The IoT (Internet Of Teeth)

Get ready for another step towards our dystopian future as scientists have invented a way to track and monitor what we eat. This 2mm x 2mm wireless sensor can be mounted on to teeth and can track everything that goes into your mouth. Currently it can monitor salt, glucose, and alcohol intake. The sensor then communicates wirelessly to a mobile device that tracks the data. Future revisions are predicted to monitor a wide range of nutrients and chemicals that can get ingested.

It uses an interesting method to both sense the target chemicals and communicate its data. It consists of a sandwich of three layers with the central layer being a biosensor that reacts to certain chemicals. The complete sandwich forms a tiny RFID antenna and when RF signals are transmitted to the device, some of the signal gets absorbed by the antenna and the rest reflected back.

The mechanism is similar to how chromatography works for chemical analysis where certain chemicals absorb light wavelengths of specific frequencies. Passing a calibrated light source through a gas column and observing the parts of the spectrum that get absorbed allows researchers to identify certain chemicals inside the column.

This technology is based on previous research with”tooth tatoos” that could be used by dentists to monitor your oral health. Now this tiny wireless sensor has evolved to monitoring the dietary intake of people for health purposes but we’re pretty sure Facebook is eyeing it for more nefarious purposes too.

Mechanisms: Gears

Even before the Industrial Revolution, gears of one kind or another have been put to work both for and against us. From ancient water wheels and windmills that ground grain and pounded flax, to the drive trains that power machines of war from siege engines to main battle tanks, gears have been essential parts of almost every mechanical device ever built. The next installment of our series on Mechanisms will take a brief look at gears and their applications.

Continue reading “Mechanisms: Gears”

Repairs You Can Print: Broken Glue Gun Triggers Replacement

Picture this: you need to buy a simple tool like a glue gun. There’s usually not a whole lot going on in that particular piece of technology, so you base your decision on the power rating and whether it looks like it will last. And it does last, at least for a few years—just long enough to grow attached to it and get upset when it breaks. Sound familiar?

[pixelk] bought a glue gun a few years ago for its power rating and its claims of strength. Lo and behold, the trigger mechanism has proven to be weak around the screws. The part that pushes the glue stick into the hot end snapped in two.

It didn’t take much to create a replacement. [pixelk] got most of the measurements with calipers and then got to work in OpenSCAD. After printing a few iterations, it fit well enough, but [pixelk] saw a chance to improve on the original design and added a few teeth where the part touches the glue stick. The new part has been going strong for three months.

We think this entry into our Repairs You Can Print contest is a perfect example of the everyday utility of 3D printers. Small reproducible plastic parts are all around us, just waiting to fail. The ability to not only replace them but to improve on them is one of the brightest sides of our increasingly disposable culture.

Still haven’t found a glue gun you can stick to? Try building your own.